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Abstract

Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composi-
tion varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been
identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration)
and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to
investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed
to the same arthropod prey and predators. We used gas chromatography—mass spectrometry to identify alkaloids from 36
individuals of six species and three genera of dendrobatid poison frogs (Adelphobates, Ameerega, and Ranitomeya) collected
in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and
analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We
also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among
sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals
from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that
variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for
most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide
insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to
identify specific intrinsic causes and predator responses.

Keywords Allopatry - Chemical Defense - Dart-poison frogs - Dendrobatidae - Sympatry

Introduction

Chemically defended animals can acquire defensive com-
pounds through several mechanisms, including endogenous
biosynthesis and exogenous acquisition via symbiosis or
dietary sequestration (Daly et al. 1994a, b; Mebs 2001;
Saporito et al. 2009). Frogs employ a vast arsenal of defen-
sive chemicals, most of which are endogenous, including
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peptides, proteins, steroid bufadienolides, biogenic amines,
and volatile organic compounds (e.g., Daly 1995; Erspamer
1994; Mailho-Fontana et al. 2018; Gonzalez et al. 2021).
However, frogs of five families, referred to as poison frogs,
have independently evolved the ability to sequester lipophilic
alkaloids from their arthropod diet (Rodriguez et al. 2010;
Saporito et al. 2012).

One of the most salient features of poison frog chemical
defense is the extensive variation in alkaloid composition
among individuals, populations, and species. The causes and
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ecological consequences of this variation must be under-
stood to identify the selective pressures driving the evolution
of this chemical defense system. Most efforts to study the
causes of alkaloid composition have focused on variation
within species, with several variables being proposed to
explain intraspecific variation, including arthropod avail-
ability (Daly et al. 1994b; McGugan et al. 2016; Moskowitz
et al. 2022; Prates et al. 2019), geographic location (Sapo-
rito et al. 2006, 2007; Daly et al. 2007, 2008a; Sague et al.
2023), season and/or year (Saporito et al. 2006, 2007; Daly
et al. 2007, 2008a; Basham et al. 2020), life stage (Daly
et al. 2002; Brooks et al. 2023), individual age (Jeckel et al.
2015a), body size (Saporito et al. 2010; Stynoski et al. 2014;
Jeckel et al. 2015a), and sex (Saporito et al. 2010).
Although the causes of intraspecific variation are far from
fully understood, the causes of interspecific variation are even
less clear. Presumably, intrinsic differences in sequestration
ability or efficiency are responsible for much of the variation
among species and clades. For example, Davison et al. (2021)
found that Dendrobates auratus does not sequester 2,6-dis-
ubstituted piperidines, even though more than 20 alkaloids
of that class have been detected in at least 15 other species of
poison frogs (Daly et al. 1987, 1993, 2003, 2009; Edwards
et al. 1988; Myers et al. 1995; Jeckel et al. 2019), and Waters
et al. (2023) reported interspecific variation in the efficiency
of epibatidine sequestration (see also Daly et al. 2003; Mebs
et al. 2014). Little is known about the mechanism(s) of alka-
loid sequestration, but Sanchez et al. (2019) reported a con-
sistent pattern of up-regulation of genes related to muscle and
mitochondrial processes in poison frogs following alkaloid
consumption. Similarly, Caty et al. (2019) reported transcript
and protein abundance patterns suggesting the involvement
of small molecule transport proteins in alkaloid bioaccumu-
lation, and Alvarez-Buylla et al. (2023) suggested a carrier
plasma globulin could be responsible for alkaloid transport.
Additionally, spatial variation in the availability of arthro-
pod sources also appears to be responsible for alkaloid vari-
ation among allopatric poison frogs. For example, although
wild-caught Oophaga lehmanni difter from close relatives in
lacking histrionicotoxins (Myers and Daly 1976), captive-
reared individuals accumulate them when provided in the
diet (Garraffo et al. 2001). Given that there are no apparent
differences in prey selectivity between O. lehmanni and other
species of Oophaga (Toft 1995), this finding suggests that
histrionicotoxin-containing ants (Jones et al. 2012) are absent
or rare within the distribution of O. lehmanni (Garraffo et al.
2001). Similarly, epibatidine is exceedingly rare in natural
populations of poison frogs, being known from only two spe-
cies of Epipedobates and one species of Ameerega (Spande
et al. 1992; Daly et al. 2000, 2005; Tarvin et al. 2017). Never-
theless, species of Dendrobates, Phyllobates, and Ranitomeya
also sequester epibatidine when administered orally (Waters
et al. 2023), suggesting a geographically restricted distribution
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of epibatidine-containing arthropods rather than a phyloge-
netically restricted (and homoplastic) ability to sequester that
alkaloid.

Unravelling the contributions of intrinsic (physiological
alkaloid sequestration ability) and extrinsic (environmental
alkaloid availability) causes is a major challenge to under-
standing interspecific variation in alkaloid composition.
Controlled laboratory experiments that administer known
quantities of specific alkaloids provide the most direct means
of testing the ability to sequester alkaloids, but they entail
captive breeding to produce alkaloid-free poison frogs and
alkaloids to administer to the frogs. Given the cost and dif-
ficulty of maintaining and breeding poison frogs in captivity,
as well as the fact that more than 1200 alkaloids representing
28 classes have been discovered in poison frogs (Hovey et al.
2018; Basham et al. 2020), only a few of which are available
either commercially or from academic laboratories, it is not
feasible to test them all experimentally.

Sympatric poison frog species afford an alternative means
of distinguishing between intrinsic and extrinsic factors, given
that sympatric frogs co-occur with the same arthropods. For
example, Myers et al. (1995) compared sympatric Oophaga
granulifera and O. pumilio from the Atlantic versant of Costa
Rica and found that they differed in 42% of their alkaloids.
Later, Mebs et al. (2014) compared Phyllobates lugubris and
P. vittatus in Costa Rica with sympatric Dendrobates aura-
tus, O. granulifera, and O. pumilio and found that the Phyl-
lobates species contained only a small subset of the alkaloids
present in the other species. Similarly, for mantellid species,
Daly et al. (2008a) found that alkaloid composition differed
between two sympatric species of Madagascan poison frogs
(Mantella baroni and M. madagascariensis).

In addition to understanding the causes of alkaloid vari-
ation in poison frogs, the ecological consequences of this
variation must also be understood to clarify its biological
significance and identify the selective pressures driving the
evolution of this system of chemical defense. To estimate
their antipredator function, frog alkaloids have typically
been injected into laboratory mice to determine minimum
lethal doses (LDs) or behavioral responses (e.g., Daly and
Myers 1967; Darst et al. 2006; Maan and Cummings 2012).
However, given that alkaloid defenses evolved in relation
to naturally occurring predators, which do not include
rodents, and alkaloids are externally contacted and ingested
by potential predators, not injected into them, the relevance
of those studies to understanding the ecology and evolution
of poison frog chemical defense is questionable (Weldon
2017; Bolton et al. 2017; Saporito and Grant 2018; Law-
rence et al. 2023).

Palatability assays provide an alternative method of testing
the antipredator function of poison frog alkaloids. Given that
birds are believed to be the main predator driving the evolu-
tion of visual aposematism in poison frogs, Lawrence et al.
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(2019, 2023) performed alkaloid palatability assays with wild-
caught Blue Tits (Cyanistes caeruleus) to investigate the link
between amount and composition of skin alkaloids and predator
response. They observed a significant aversive response, with
different responses to the alkaloids from different populations
of the poison frog Dendrobates tinctorius.

Arthropods are also known to predate frogs (including
poison frogs; e.g., Nyfteler and Altig 2020), and arthropod
predators that predominantly use chemoreception in prey
detection are expected to be especially sensitive to variation
in chemical defenses. Murray et al. (2016) found that the
banana spider Cupiennius coccineus and bullet ant Parapon-
era clavata, both of which are natural frog predators, readily
consumed the non-alkaloid containing rain frog Craugas-
tor bransfordii but consistently rejected alkaloid-containing
Oophaga pumilio following attack (see also Fritz et al. 1981;
Szelistowski et al. 1985; Gray et al. 2010). Similarly, palat-
ability assays have been used to test the antipredator function
of individual poison frog secretions. Bolton et al. (2017) and
Brooks et al. (2023) performed palatability assays using the
Neotropical ant Ectatomma ruidum. Similarly, given that
the fruit fly Drosophila melanogaster is commonly used as
a model to study arthropod taste perception and specifically
to understand arthropod perception of alkaloids, Bolton et al.
(2017) and Jeckel et al. (2019) ran palatability assays using
that species. To date, palatability assays have not been used
to test the antipredator function of sympatric poison frogs.

Atlantic
___Ocean

/ K N Venezuela

Colombia

In the present study, we tested whether alkaloid composi-
tion, richness, and quantity differ among sympatric dendro-
batid poison frog species at three localities in two regions of
the Amazon rainforest. We also analyzed the variation in alka-
loid composition among con- and heterospecific populations
at these localities. Finally, we tested how different alkaloid
compositions would be perceived by arthropod predators by
measuring the palatability of skin extracts from individual
sympatric poison frogs.

Materials and methods
Sample collection

We collected poison frogs in two regions of the Brazil-
ian Amazon rainforest (Fig. 1). In 2010, we collected five
individuals each of Ameerega hahneli, Am. macero, Am.
trivittata, and Ranitomeya cf. cyanovittata near Igarapé
Esperancga, within the protected area of Reserva Extrativ-
ista do Riozinho da Liberdade, municipality of Taruaca,
Acre (Locality 1: 7°5720.11”S, 72°4'35.41”W). Later, in
January 2017, we collected individuals from two localities
adjacent to Caxiuana Bay, Pard. On the west side of the bay,
inside the Caxiuana National Forest protected area, munici-
pality of Melgaco, we collected five individuals of Adelpho-
bates galactonotus and three individuals of R. amazonica

Localities
Species 1 2 3
Adelphobates galactonotus - n=5 n=5
Ameerega hahneli n=5 n=3
Ameerega macero n=5
Ameerega trivittata n=5
Ranitomeya amazonica - n=3
Ranitomeya cf. cyanovittata n=5

Fig. 1 Collection sites in the states of Acre and Para, Brazil and the sample size of each species of poison frog
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(Locality 2: 1°48'16.87”S, 51°26'45.31”W), and on the east
side, in municipality of Portel, we collected five individu-
als of Ad. galactonotus and three individuals of Am. hah-
neli (Locality 3: 1°57'43”8S, 51°25'09”W). All frogs were
euthanized by either cooling followed by flash freezing in
liquid nitrogen (Lillywhite et al. 2017) or pithing (McDiar-
mid 1994). Following euthanasia, whole skins were removed
and stored in glass vials with Teflon-coated lids containing
1 mL 100% methanol. Data on Ad. galactonotus are from
Jeckel et al. (2019).

Alkaloid extraction, identification,
and quantification

We extracted alkaloids from skin samples using an acid—base
extraction (Saporito et al. 2010). We added 100 pL of a nico-
tine solution (0.1 pg nicotine/pL. methanol) to each of the
37 samples as an internal standard. Alkaloids were identi-
fied by comparing their retention times (Rt) via gas chro-
matography (GC) and mass spectral data with previously
reported data on anuran alkaloids (Daly et al. 2005, 2007,
2008a, 2008b, 2009; Garraffo et al. 2012; Grant et al. 2012;
Jeckel et al. 2015b; RAS unpubl. data). GC-MS analysis was
performed on a Varian Saturn 2100 T ion trap MS coupled
to Varian 3900GC with a 30 m 0.25 mm i.d Varian Factor
Four VF-5 ms fused silica column. Gas chromatography was
performed with a temperature program increasing from100
and 280 °C at a rate of 10 °C per minute, using helium as
transport gas (1 mL/min). We considered as new isomers the
alkaloids that shared the same mass spectral data with previ-
ously identified alkaloids but differed more than 0.15 min in
Rt (Daly et al. 2005). We used a nicotine standard as a basis
to quantify each alkaloid (Grant et al. 2012; Stynoski et al.
2014; Jeckel et al. 2015b, 2019; Crothers et al. 2016; Bolton
etal. 2017; Basham et al. 2020; Alvarez-Buylla et al. Alva-
rez-Buylla et al. 2023; Davison et al. 2021). We analyzed
samples in triplicate and used the average of the three meas-
urements for statistical analysis. Prior to statistical analysis,
alkaloid quantities (pg per frog skin) were standardized by
dividing by wet frog skin mass (mg).

Palatability test

To test alkaloid palatability, we performed feeding trials
with skin secretions from individuals of sympatric Am.
hahneli, Am. macero, Am. trivittata, and R. cf. cyanovittata
from Locality 1 using fruit flies (Drosophila melanogaster),
which are commonly used as a model to study arthropod
taste perception and specifically to assess alkaloid percep-
tion by arthropods (Devambez et al. 2013; Lee et al. 2015;
Meunier et al. 2003; Sellier et al. 2011) and as a proxy for
arthropod predators (Bolton et al. 2017; Jeckel et al. 2019).
In this experiment, fruit flies were offered two sucrose
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solutions, one that contained alkaloid (treatment) and one
that did not (control; Bolton et al. 2017). To distinguish
between control and alkaloid-fed treatment inside the body
of the fruit flies, we added blue and red food coloring to the
treatment and control solutions, respectively, as previous
studies have shown that D. melanogaster does not prefer
either food coloring solution (Meunier et al. 2003; Sellier
et al. 2011; Bolton et al. 2017).

Following Bolton et al. (2017), we made two stock
solutions, one for the control solution and one for the
treatment solution, each containing 20 mL of 20%
sucrose/50% ethanol. For the control solution, we added
100 pL of red food coloring (Market Pantry®) to one
stock solution. For the treatment solution, we added
50 pL of blue food coloring (Market Pantry®) to the other
stock solution. A portion of the blue treatment solution
was used to resuspend the naturally occurring alkaloids
in each of the 20 frog skins, such that each treatment
solution reflected the alkaloid defenses of an individual
frog. In order to determine if alkaloid palatability in fruit
flies is dose-dependent, we tested three concentrations:
0.625%, 1.25%, and 2.5% of the total alkaloid quantity in
each individual skin. In total, we prepared four independ-
ent replicates assays for each one of the 20 skin samples,
at each one of the three concentrations (n =12 for each
individual frog skin extract).

Each palatability assay used 10 D. melanogaster individu-
als that were 3—11 days old, grown on standard fruit fly media
(Formula 4-24®Plain, Carolina Science), and starved for 24 h
prior to the experiment. These fruit flies were then placed in a
9 cm Petri dish (Fisherbrand, 100 mm X 15 mm, sterile, Poly-
styrene) lined with filter paper dampened with deionized water
and containing 10 L of the control and treatment solution each
on plastic cover slips (22 mm Fisherbrand® 2R Plastic Cover
Slips). We allowed the fruit flies to feed for 2 h in the dark, at
which time we euthanized them by freezing, following previous
methods (Sellier et al. 2011; Devambez et al. 2013; Bolton et al.
2017; Jeckel et al. 2019). We then used a dissecting microscope
to count the individuals with red, blue, or purple (mixed) abdo-
mens. With these data, we calculated the palatability index for
each assay, determined by: (blue fruit flies—red fruit flies—0.5 *
purple fruit flies)/(total fruit flies). This index ranges from— 1
to+ 1, with values equal to or greater than zero indicating palat-
able alkaloid solutions and negative values indicating unpalat-
able alkaloid solutions (Bolton et al. 2017).

Statistical analysis

All statistical analyses were performed in RStudio 2023.03.1
(RStudio Team 2023) using R 4.2.2 (R Core Team 2022).
All plots were created using ‘ggplot2’ package (Wickham
2016). We used one-way analyses of similarity (ANOSIM)
based on Bray—Curtis dissimilarity to compare alkaloid
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composition among sympatric species and visualized vari-
ation using non-metric multidimensional scaling (nMDS) in
‘vegan’ package (Oksanen et al. 2022). Given the proximity
of Localities 1 and 2, we also tested if the alkaloids detected
on opposite sides of Caxiuana Bay differed, and if frogs
shared more or less alkaloids with conspecific frogs from
different localities than they do with heterospecific frogs
from the same locality. We created a matrix with individ-
ual frogs (rows) and the relative quantity of each identified
alkaloid (columns; Supplementary material 1). Because our
data are non-parametric, we used generalized linear models
(GLMs) to compare alkaloid quantity (using gamma distri-
bution because data are right skewed) and richness (using
a negative binomial distribution because count data are
over dispersed) among species and localities. The selected
GLMs were used as input for post-hoc pairwise comparisons
between sympatric species with Bonferroni correction using
the ‘emmeans’ package (Lenth 2024).

We also used linear models to (1) test if alkaloids were
palatable to fruit flies at each of the three concentrations and
(2) compare differences in palatability among species. Alka-
loids were considered palatable if palatability index scores
were zero or greater, so palatability indices for all frogs were
compared to a hypothesized mean of zero (Dyer et al. 2003;
Bolton et al. 2017). Finally, we used GLMs to evaluate the
relationship between alkaloid quantity, richness, and palat-
ability. We reported statistical summaries as X + SE.

Results
Alkaloid composition

We identified 135 alkaloids, including isomers, represent-
ing 18 structural classes (Supplementary material 1). His-
trionicotoxins (HTX), decahydroquinolines (DHQ), and
3,5-disubstituded indolizidines (3,5-1) were the only classes
identified in all species, with HTXs and DHQs accounting
for more than 50% of the total alkaloid quantity in all spe-
cies (Fig. 2). The only alkaloids found in all species were
HTX 239H, HTX 259A, DHQ cis-243A, and 3,5-1 223AB.
Epiquinamide (Epiqui), 4,6-disubstituted quinolizidine (4,6-
Q) and pumiliotoxin (PTX) were exclusive to Ad. galactono-
tus, dehydro-5,8-disubstituted indolizidine (Dehydro-5,8-1)
were exclusive to Am. trivittata, and N-methyl-decahydro-
quinoline was exclusive to Am. macero. Alkaloid richness
and quantity were positively related (f=0.04; p=0.05). At
Locality 1, Am. trivittata possessed the greatest alkaloid
quantity (11.0+ 1.0 ug/mg skin) and richness (37.8 +3.6
alkaloids/skin), followed by Am. macero (4.7 +1.6 pg/
mg skin; 33.0+4.3 alkaloids/skin), R. cf. cyanovittata
(3.3+0.8 pg/mg skin; 15.0+ 1.9 alkaloids/skin), and Am.
hahneli (1.6 £0.2 pg/mg skin; 13.2 +2.4 alkaloids/skin). At

Locality 2, Ad. galactonotus had greater alkaloid quantity
(2.3 +0.4 pg/mg skin) and richness (36.8 +4.3 alkaloids/
skin) than R. amazonica (0.2 +£0.03 pg/mg skin; 17.0+2.1
alkaloids/skin). At Locality 3, Ad. galactonotus also had
greater alkaloid quantity (2.2 +0.6 ug/mg skin) and richness
(34.6 + 2.8 alkaloids/skin) than Am. hahneli (0.4 +£0.03 pg/
mg skin; 24.7 + 0.7 alkaloids/skin; Fig. 3).

Sympatry analyses

Our analyses revealed significant differences in alkaloid
composition among sympatric species from Locality 1
(R=0.791; p=0.001), Locality 2 (R=0.949; p=0.018), and
Locality 3 (R=1; p=0.020; Fig. 4). These differences were
also observed in both alkaloid richness and quantity (Fig. 3;
Supplementary material 2).

Samples from Localities 2 and 3 corroborated the con-
clusion by Jeckel et al. (2019) that alkaloid composition
does not differ between frogs from opposite sides of the bay
(R=—-0.0008; p=0.370), even though their analysis was
restricted to Ad. galactonotus and ours also included Am.
hahneli and R. amazonica. Among the 26 alkaloids reported
by Jeckel et al. (2019) as unique to Locality 3, DHQ 5-¢epi-
trans-243A was also found in one individual of R. amazon-
ica at Locality 2. Likewise, among the 15 alkaloids reported
by Jeckel et al. (2019) as unique to Locality 2, 5,6,8-1249C
was also found in all but one specimen of Am. hahneli from
Locality 3.

Despite the lack of significant differences in alkaloid
composition on opposite sides of Caxiuana Bay (Localities
2 and 3), we observed large differences in the number of
alkaloids shared between pairs of species, with allopatric
conspecific pairs possessing a significantly higher mean
number of shared alkaloids (X = 11.5) than sympatric hetero-
specific pairs (¥ = 6.9; p < 0.001). At Locality 2, sympatric
Ad. galactonotus and R. amazonica shared only 18 of 76
alkaloids (24%), and at Locality 3, sympatric Ad. galactono-
tus and Am. hahneli shared only 20 of 84 alkaloids (24%).
In contrast, the two populations of Ad. galactonotus from
opposite sides of Caxiuand Bay (Localities 2 and 3) shared
46 of 89 alkaloids (52%; Jeckel et al. 2019).

Palatability

A dose response was present for alkaloid palatability across
all three concentrations (p <0.0001 for all comparisons),
with the highest dose concentration being the least palat-
able and the lowest concentration the most palatable (Fig. 5).

Given that all alkaloid concentrations were unpalatable,
we used the intermediate concentration of 1.25% for species
comparisons. We found strong evidence for differences in pal-
atability among species (R>=0.57; p<0.001), with pairwise
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Fig.2 Relative quantities of all alkaloid classes. Species are sepa-
rated by locality (1, 2 and 3). Alkaloid class abbreviations: 1,4-disub-
stituted quinolizidine (1,4-Q); 3,5-disubstituted indolizidine (3,5-1);
3,5-disubstituted pyrrolizidine (3,5-P); 4,6-disubstituted quinolizidine
(4,6-Q); 5,6,8-trisubstituted indolizidine (5,6,8-1); 5,8-disubstituted

comparisons indicating significant differences between Am.
hahneli and Am. trivittata (t=4.57, p<0.01) and A. trivittata
and Ranitomeya cf. cyanovittata (t=-4.24, p<0.01); none of
the other comparisons were significant (Supplementary mate-
rial 3). Also, we observed a negative correlation between palat-
ability and alkaloid richness (R?=0.53; p <0.001) and quan-
tity (R2=0.51; p <0.001). For example, the species with the
highest alkaloid quantity and richness, Am. trivittata, was also
the least palatable (Palatability Index=—0.962+0.121), and
the species with the lowest quantity and richness, Am. hahneli,
was the most palatable (Palatability Index=-0.338 +£0.07).
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Adelphobates Ranitomeya
galactonotus

T T
Adelphobates Ameerega

amazonica galactonotus hahneli

indolizidine (5,8-1); allopumiliotoxin (aPTX); dehydro-5,8-disubsti-
tuted indolizidine (dehydro-5,8-1); decahydroquinoline (DHQ); histri-
onicotoxin (HTX); N-methyl-decahydroquinoline (N-methyl-DHQ);
piperidine (Pip); Pumiliotoxin (PTX); Pyrrolizidine (Pyr) and Spiro-
pyrrolizidine (SpiroP)

Discussion

Early research on poison frogs assumed their alkaloid-based
defenses were acquired through endogenous biosynthesis
(for historical account, see Saporito et al. 2009). However,
following the discovery that poison frogs sequester their
defensive alkaloids from dietary arthropods (Daly et al.
1994a, b), evidence has mounted that the presence and
quantity of a given alkaloid in a frog’s skin depends on both
the frog’s intrinsic ability to sequester that alkaloid and the
extrinsic availability of that alkaloid in dietary arthropods.
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results of statistical comparisons see Supplementary material 2

Teasing apart intrinsic and extrinsic causes is essential to
explaining the high amount of variation among individuals,
populations, and species but is especially challenging when
studying natural populations due to the many variables that
must be considered.

In an effort to reduce variables and isolate possible
causes of alkaloid variation, most studies of naturally
occurring poison frogs have focused on intraspecific vari-
ation. For example, Jeckel et al. (2015a) controlled for
phylogenetic, spatial, and temporal variables by study-
ing individuals of a single species collected at the same
time and locality, finding that alkaloid richness depends
on individual age—probably because older frogs have
consumed a greater diversity of arthropod prey over their
lifetime than younger frogs (i.e., an extrinsic cause)—
whereas alkaloid quantity depends on individual size,
with larger frogs having larger and more abundant poi-
son glands for alkaloid storage (i.e., an intrinsic cause).

Given that sympatric poison frog species co-occur with
the same arthropod prey, studies of heterospecific poison
frogs control for spatial variation by focusing on frogs
from a single locality. Our finding that defensive alkaloids
vary among sympatric Amazonian poison frog species is
strongly suggestive of intrinsic causes. This conclusion
is further strengthened by our finding that the alkaloid
profiles of allopatric conspecific frogs are more similar
to each other than those of sympatric heterospecific frogs
and is consistent with previous studies of sympatric poison
frogs in Central America (Myers et al. 1995; Mebs et al.
2014) and Madagascar (Daly et al. 2008a).

Although our results are suggestive of intrinsic causes,
additional data are required to determine which specific
intrinsic causes explain the observed variation. For exam-
ple, the species we studied vary considerably in size, with
Am. trivittata being both largest (37-55 mm snout—vent
length [SVL]; Zapata-Hernandez and Herrera-Lopera

@ Springer



J. Albuquerque-Pinna et al.

0.5 °

0.0

NDMS2
°
°

-0.51 b

1.0 05 0.0 05 10 15

NDMS1

0.4 °

NDMS2

NDMS1

0.44

0.24

NDMS2

0.01

0.2 N

1.0 05 0.0 05

NDMS1

[ ]
0.0 1
® Adelphobates galactonotus
-0.41 Ranitomeya amazonica
0.8 1 °

Species
® Ameerega hahneli
Ameerega macero
® Ameerega trivittata

® Ranitomeya cf. cyanovittata

Species

Species
® Adelphobates galactonotus

® Ameerega hahneli

Fig.4 nMDS plots using Bray—Curtis dissimilarity for alkaloid composition and Venn diagrams showing number of shared alkaloids among

sympatric species at a Locality 1, b Locality 2, and ¢ Locality 3

2021) and having the greatest alkaloid richness and quan-
tity, whereas the two species of Ranitomeya were small-
est (15-19 mm SVL; Perez-Pefia et al. 2010; Brown et al.
2011) and had considerably lower alkaloid richness and
quantity. Nevertheless, the relationship between species
size and alkaloid richness and quantity is not straight-
forward. For example, the two species of Ranitomeya are
approximately the same size but differed greatly in alkaloid
richness and quantity, and R. cf. cyanovitatta possessed
a greater quantity of alkaloid per mg skin than the much
larger (30.5-42 mm SVL; Silverstone 1975; Hoogmoed
et al. 2012) Ad. galactonotus. Clearly, larger samples and
additional data (e.g., diet, age, size) are required to deter-
mine which intrinsic causes (e.g., variation in microhabitat,
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feeding behavior, physiological mechanism of sequestra-
tion) explain this variation.

All the skin secretions we tested were unpalatable, sug-
gesting that they serve to deter arthropod predators. As
found in previous studies (Bolton et al. 2017; Jeckel et al.
2019; but see Lawrence et al. 2019), secretions of greater
alkaloid richness and quantity were least palatable. It is
possible that species for which chemical defenses are less
unpalatable rely more on mechanisms of predator avoid-
ance than antipredator chemical defenses (Brodie et al.
1991). However, despite exhibiting different alkaloid
profiles, the secretions of most of the sympatric poison
frogs we tested did not differ in palatability. Variation in
palatability is an adaptative trait if predators are able to
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distinguish and respond to such variation (Speed et al.
2012; Ottocento et al. 2023), so lack of differences in pal-
atability could indicate a lack of selection via predation.
Alternatively, it is likely that different predators respond
differently to particular alkaloids, and it is possible that
chemically oriented vertebrate predators (e.g., snakes)
might perceive differences in palatability that arthropods
do not. Most reports of poison frog predation are based
on anecdotal observations (e.g., Summers 1999; Gray and
Christy 2000; Alvarado et al. 2013; Lenger et al. 2014;
Nyffeler and Altig 2020), and additional information is
required about natural predators and their responses to
specific alkaloids.
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